导读:《最小公倍数教学设计一等奖(优秀16篇)》是潇洒范文网小编专门为您精选的一篇实用范文类型文章,助力您的范文写作,希望有所帮助。
教学计划的合理性与科学性对教师的教学效果起到至关重要的作用,它是提高教育教学质量的基础和保障。阅读教学计划范例时,可以思考教学目标的设定是否清晰明确,以及教学内容是否有序合理。
最小公倍数教学设计
一、精心研究,创新备课。
1、说“公”。只要与“公”有关的词语都可以说。然后简要分析“公”字所代表的意思。然后让学生思考前面是否学过与“公”字有关的数学知识。学生很自然的想到了公因数和最大公因数。然后借机引入本课课题:公倍数与最小公倍数。
2、让学生结合已有知识经验说说自己对“公倍数与最小公倍数”的理解。
4、铺正方形纸板。每个小组发放一套长3厘米、宽2厘米的小长方形代替“春”字剪纸进行探究。看能否在6张边长不同的正方形纸板上正好铺满。
5、现场汇总各小组探究情况。能按照长方形长或宽正好排满的用“y”表示,不能正好排满的用“n”表示。让同学们在小组内交流自己的想法,找出为何有的额正好铺满,有的不能正好铺满的原因。
6、认识公倍数。我们发现这样的小长方形能正好铺满边长是6厘米、12厘米、18厘米的正方形。如果用这样的长方形来铺,还能铺成边长是多少厘米的正方形呢?体会解决此类问题不必每次都摆卡片。
7、用列举法找公倍数和最小公倍数。
8、在解决问题中渗透短除法。体会上述方法都有一定的局限性。而短除法可以找出任意几个数的最小公倍数。
9、让学生认识的找最小公倍数的应用。可以根据最小公倍数推算出其他公倍数。
10、课下整理公倍数与公因数的区别与联系学习资料卡。在对比中清晰认知这两个知识点。培养学生掌握科学高效的学习方法。
二、环环相扣,细腻授课。
上课开始后,设计思路的前两步进展非常顺利。到了第三步时,学生开始出现困惑的表现,这正是我所追求的学生真实状态。不然一开始就让学生感觉很简单,对他们思维深度的`开发力度就不够。
在接下来的学生动手操作中,进展很不顺利。由于发放给他们的卡片只能满足横铺和竖铺一侧的数量。无法实现真正的密铺。我这一设计目的是让学生学会从铺一侧而推理出能否正好铺满。结果对一些同学来说比较抽象。他们把手中的长方形卡片铺在一起,到是得到了正方形,但只是铺在正方形纸板的一个角上。无法确定是否可以正好密铺整个正方形纸板。
于是,我告诉他们,如果你想不出其他办法,可以向老师申请备用卡片。结果没有一个小组申请。看来他们也是不想服输。然后我借机介绍了一个成功小组的做法,其他小组受到这一启发,可谓茅塞顿开。不一会就顺利完成了操作探究。唯一比较遗憾的是由于一开始操作不成功,再思考办法,然后根据受到的启发进行改正,耽误了很长一段时间,影响了后面一小部分教学内容。
设计思路的第5步—第7步进展非常顺利。毕竟同学们的思路一旦打开,他们就会产生很多我们不可小觑的想法。而且精确而富有深度。
三、课后反思,着眼未来。
通过40分钟的上课过程,我为孩子们的成功探究感到开心,为他们充实的收获而喜悦,为没有完成所有的教学设计而遗憾。这也提醒我在今后的教学设计中除了考虑学生的知识储备外,还要考虑到他们在平时的学习中是否有动手探究的实践经验。然后将自己的新想法、新思路,进行科学有效的实施。在未来的成长过程中争当一名研究型教师。不管成功与否,要敢于迈出打造创新、务实、高效课堂的第一步。让自己和学生的思想永远处于最活跃的状态,这才是一个数学老师所应追求的。
最小公倍数教学设计
:经历具体的操作活动,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数,在探究中体会数形结合的数学思想。
在探索寻找公倍数和最小公倍数的过程中,经历观察、归纳等数学活动,进一步发展初步的推理能力。
会运用公倍数,最大公倍数的知识解决简单的实际问题,体验数学与生活的联系,增强数学意识。
理解公倍数和最小公倍数的意义。
利用公倍数、最小公倍数解决简单的实际问题。
多媒体课件。
若干张长3cm,宽2cm的长方形纸以及边长为5cm,6cm,……,15cm,16cm的正方形纸各一张。
这部分内容是在学生掌握了倍数概念的基础上进行教学的。主要是为学习通分做准备。按照《标准》的要求,教材中要注重揭示数学与实际生活的联系。
一、激趣引入,探究已知
师:课前我们来做个报数游戏,看谁的反应最快。
师:请报到3的倍数的同学起立。再来一轮,报到4的倍数的同学起立。你们发现了什么?(有的同学要起立两次,因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。请起立两次的同学报数。(12、24)
生:一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
这节课我们就来进一步研究倍数。
二、创设情景,动手操作
1.出示主题图:
师:孔老师家的墙面出现了问题,谁愿意来帮工人师傅解决问题?
师:同学们,你们认为解决这个问题要注意什么?
课件出示红色字体:用的墙砖都是整块,用长方形铺一个正方形。
2.合作交流,动手操作
我们根据上面的要求,请小组同学用一些长3厘米、宽2厘米的长方形,来代替瓷砖在正方形纸上,合作摆一摆,也可以画一画,或者算一算,探究正方形的边长可以是多少分米?最小是多少分米?看谁的方法多。一会我们进行展示。
(设计意图:这个材料的选择经过多次的筛选,最终还是用书上的例题,最主要是基于以下两点考虑:一是“铺地砖”这一生活情境学生有一定的生活经验,也具有一定的挑战性,能有效激发起学生的学习兴趣;二是可借助于实物模型,让学生在实践操作活动中加强思考与探索,经历知识的发生与形成过程,完成数学建模)
师:哪个小组愿意展示?
(教师根据学生实物投影展示,出示相关方法的课件)
预设:(1)我用的是计算法,长方形的长为3,宽为2,那么选用的边长得既能除开2,也能除开3。也就是既是2的倍数也是3的倍数。所以我们选用了边长为6厘米和12厘米的正方形,果然成功了,这是我们拼摆的图形。(师引导,像这样的数还有哪些?)
(2)我选用的是摆一摆的方法。我摆的是边长为5厘米、6厘米和8厘米的正方形。其中,边长为5厘米、8厘米的正方形都失败了。只有边长是6厘米的成功了。
3.归纳总结
通过同学们的展示,你得出什么结论?
边长是6分米、12分米、是6的倍数的正方形都可以进行铺设。只有既是2的倍数又是3的倍数才可以满足要求。
师:那么这这些答案和长3、宽2有着怎样的关系呢?请用集合图来表示。
填完同学,结合预习的知识。自己说说每一部分表示什么?小组再交流一下。
预设:2的倍数有2,4,6,8,10,12,14…;
3的倍数有3,6,9,12,15,18,…
公倍数有6,12,18,24…
最小公倍数是6。(板书)
师小结:揭示课题:最小公倍数
4.回顾生活。
如果以后再考虑“可以选择边长是几分米的正方形?”我们可以直接?(找公倍数)
那如果解决“边长最小是几分米”呢?(找最小公倍数)
三、拓展提升、实际应用
1.基础题。
2.综合题。
3.发展题。
4.生活中的应用。
四、课题回顾,布置作业
师:同学们,这节课我们学习了什么,你有什么收获?
预设:这节课我们主要认识了公倍数和最小公倍数,掌握了求两个数的公倍数和最小公倍数的方法。
这一知识在实际生活中应用非常广泛,求解最小公倍数的方法也很多。回家搜集整理,下节课展示讲解。
公倍数与最小公倍数
教学目标:
1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。
2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
最小公倍数教学设计
1、复习、整理本单元的基本概念,在练习中进一步理解公因数、最大公因数、最简分数等概念。
2、通过输理、比较,建立相关概念的关系。
3、在游戏、应用中体验数学的趣味性。
一、基本练习
1、复习找因数、公因数的方法:
练习第一题。
学生填写后,说说你是怎么想的。巩固找公因数的方法。
2、复习约分的方法:
练习第二题先约分,再连线。
二、运用知识模型:
1、复习分数的意义、约分等知识的综合运用。
第3题。
让学生自己用分数表示,并交流自己的思考方法。
2、第4题。
先让学生找出分数,并说说自己的思考方法?
3、第5题。
本题开放性强,学生可以自由分割,并用分数表示。
三、思考题:
本题先要帮助学生理解题意,并思考:选择怎样的地砖才能没有剩余?引导学生认识到问题的实质是要求24和30的公因数是1、2、3、6,因此可以选边长是1dm,2dm,3dm,6dm的方转。
四、实践活动:
先让学生用最简分数表示小明一天中每项活动的时间,巩固分数的意义、分数与除法、约分等知识。然后让学生自己设计一张表格,并用分数知识进行交流。
公倍数与最小公倍数
文章摘要:如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个。
解:鸡蛋数量是一个比2、3、4、5、6的公倍数多1,而且恰好是7的倍数的数。
2、3、4、5、6的最小公倍数是60,但60+1=61不是7的倍数。60的2倍、3倍、4倍加上1以后都不满足条件。
只有60的5倍加1能被7整除,所以鸡蛋数是:
60×5+1=301(个)。
满足上述条件的数还有721,1141……但篮子里不可能装这么多鸡蛋。
例2孟老师负责运动会团体操的队形排列。他在操场上把参加团体操的同学排成10人一行,发现少1人;排成9人一行,还是少1人;排成8人一行,还是少1人;排成7人一行、6人一行……2人一行,每次总是少1人。孟老师生气了:真见鬼,怎么排都少1人!到底有多少人参加团体操?全校的学生都来了也不过3000人。
解:孟老师只要把自己算进去,那么10人一行也好,9人一行也好……,2人一行也好,都能恰好分完,就是说,正好是10、9、8、7、6、5、4、3、2的公倍数。这几个数的最小公倍数2520,减去孟老师,所以是2519人。
解:相会时必定是三人绕花园一周时间的公倍数,而最少时间为其最小公倍数。
[45,60,72]=360。
原处相会需经360÷60=6(小时)。
甲绕360÷45=8(周)。
乙绕360÷60=6(周)。
丙绕360÷72=5(周)。
解:人数是2、3、4的公倍数,其[2,3,4]=12,即至少12人,用盘。
12÷2+12÷3+12÷4=13(个)。
因为实际用盘是13的65÷13=5(倍),所以参加会的学生是。
12×5=60(人)。
此题解法很多,但都没有用求最小公倍数的方法来得简便。
求出10和8的最小公倍数,就是求出了至少要经过多少天,乙车间比甲车间多生产整整“一批零件”。
[10,8]=40200×40=8000(个)。
例6甲、乙两车同时从a至b,甲车每小时行48千米,乙车每小时行36千米。甲车途中停留4小时,结果比乙车迟到1小时,求a、b两地的距离。
此题的解法也很多,但都比不上求最小公倍数的解法巧妙。
由题意可知,从a至b,甲车比乙车少用4-1=3(小时),可用求最小公倍数法求出至少行多少千米,甲车比乙车少用1小时,那么,3个这样的多少千米就是a、b两地间的距离。
[48,36]=144。
144×(4-1)=432(千米)。
解:[50,40]=200。
这段距离为0.44×200=88(米)。
因为50与40的最小公倍数是200,而200÷50=4,200÷40=5,说明都转200周时甲环行了4段这样的(88米)距离,而乙环又则行了5段同样的距离,比甲多出一段这样的距离。
解:因为鸭头、鸭脚总数不超过500,而一只鸭的头和脚是3,所以鸭的总数不会超过200只。
鸭数用3除余1,用5除余3,用7除余5,它们的除数和余数都差2,加上2就一定能被这三个数整除。
[3,5,7]=105。
鸭数为105-2=103(只)。
公倍数与最小公倍数
在学习本课之前,学生已理解和掌握了倍数的含义,初步学会了找一个数的倍数。
例1学生通过观察、操作,在用长3厘米、宽2厘米的长方形纸片铺满边长6厘米的正方形后,得出结论,6既是2的倍数,又是3的倍数,所以能正好铺满这个正方形。根据这一发现,继续引导学生思考:“这样的长方形还能铺满边长是多少厘米的正方形?你是怎么想的?”学生分析、比较后发现还能铺满边长是12厘米、18厘米、24厘米……的正方形。学生通过观察比较后还发现2和3的公倍数6、12、18、24等数还具有如下特征:(生1)都是双数,各个数位上的和又是3的倍数;(生2)6+6=12,12+6=18,18+6=24;(生3)2×6=12,3×6=18,4×6=24。根据以上规律,学生总结只要找到两个数的最小公倍数,就能找到其它的公倍数。这一发现对于找两个数的公倍数有着重要价值。
之后,找6和9的公倍数和最小公倍数,很多学生也是根据以上规律,先找到了两个数的最小公倍数,再根据最小公倍数去找这两个数其它的公倍数。但也有几个学生出现了如书上的第1种方法,先依次分别写出6和9的倍数,然后再找出它们的公倍数。接着,我再向学生介绍了书上的第2种方法,先找出9的倍数,再从9的倍数中找出6的倍数。当我提问为什么先找出9的倍数时,学生回想以前在做一一列举时也是用的这种方法,先列举大的数的倍数可以少写一些倍数。等以后熟练后应用这种“大数扩大法”会很简捷,所以我也比较倾向于这种方法,学生先找两个数的最小公倍数的方法固然简单,但数据一大就很难一眼找出两个数的最小公倍数,因此,我建议学生根据具体情况选择合适的方法。
最后,集合图的呈现,我改变了原来教学设计中的直接出示集合图的数据,而是在黑板上画出集合图,先引导学生观察图的特征,介绍集合图的填写方法,再让学生自己独立填写。这比直接出示引发学生的思考,如:公倍数写在中间,两边写倍数时就不要重复写了;写倍数和公倍数时都要加省略号,这些都是学生在独立填写中发现并提醒其他同学注意的地方。
因本课的学习内容较多,所以我放慢了速度,练习题都在下一节课完成,让学生先把以上的内容吸收消化了。下一节课中什么时候加省略号,什么时候不用加,求公倍数和最小公倍数时的书写格式,都是要加以强调的。
最小公倍数教学设计
教师:这就是我们这节课要学习的内容:最小公倍数(板书)。
2、出示日期,让学生找出巴依老爷休息的日期和标出账房先生休息的日期
3、展示问题(让学生回答)。
(2)小渔夫休息的日子有哪几天?6,12,18,24,30。
它们都是()的倍数。
(3)老渔夫和小渔夫同时休息的日子有哪几天?12,24。
它们是()和()共同的倍数。
(4)我最早应在几号去拜访他们?12。
4、总结问题后,导出课题:最小公倍数。
5、出示问题:(通过上面的问题以及以前学过的最大公因数的概念我们可以知道)。
(1)什么叫公倍数?
6、学生:回答。
教师:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
最小公倍数教学设计
1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
2.培养学生的观察能力、分析能力和归纳概括能力。
3.培养学生良好的学习习惯。
1、理解最小公倍数的意义
2、初步学会求两个数的最小公倍数。
任务一理解最小公倍数的意义
任务二求两个数的最小公倍数
一、激情导课
1、师:同学们,看今天我们要学习什么?(最小公倍数)
看到这个题目,你会想到我们以前学过的什么知识?(倍数)
2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。
3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的记住它。
二、民主导学
任务一:
一、任务呈现
要求:先独立思考,不会的小组商量。
提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天
二、自主学习
教师巡视学习情况
三、展示交流
1、师:他们可选那几日外出?(12、24)
你是怎样选出来的?根据回答板书;
妈妈的休息日:481216202428----4的倍数
爸爸的休息日:612182430-----6的倍数。
共同的休息日:1224-----4和6的公倍数
最近的一天:12------4和6的最小公倍数
还可以用集合图来表示,
2、仔细观察两组数据有什么特征?
3、再次强调4的公倍数就是妈妈的休息日
6的公倍数就是爸爸的休息日
4和6的公倍数就是爸爸和妈妈的共同休息日
4、最近是哪一天?12
12也是这公倍数中最小的一个,叫做最小公倍数。
5、集合图还可以这样表示出示课件
问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)
你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?
这样我们可以一眼看出4和6的公倍数是12、24.
6、谁能用一句话说说什么是公倍数?什么是最小公倍数?
二、那如何求最小公倍数呢?
任务二:
求两个数的最小公倍数
一、任务呈现
1、求6和8的最小公倍数
2、想一想
1.你还能想出几种求法?
2.公倍数有多少个?你能找出最大的公倍数吗?
3.两个数的公倍数和最小公倍数之间有什么关系?
二、自主学习
三、展示交流
1、把不同求法板书
2、交流以上三个问题
(三)检测导结
1、目标检测
求下列每组数的最小公倍数(要求5分钟)
2和74和8
3和56和15
2、结果反馈
一次正确5分,自己改正4分,帮助改正3分。
最小公倍数教学设计
《最小公倍数》是人教版五年级下册第88-90页的教学内容,是在学生已经了解了倍数、因数以及公因数和最大公因数的基础上教学的。这一内容的学习为今后的通分学习打下基础,具有科学的、严密的逻辑性。
根据课程标准和教学内容并结合学生实际,我认为这节课要达到以下的教学目标:
1.理解算理并学会计算两个数的最小公倍数,通过对最小公倍数算理的探究,培养和发展学生的逻辑思维能力。
2.能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。教学重点:公倍数与最小公倍数的概念建立。学会求两个数的最小公倍数。
教学难点:理解求两个数最小公倍数的算理,能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。
数学教育的出发点和归宿是学生熟悉的现实生活。让学生从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。而探究性学习又是新一轮基础教育课程改革所倡导的学习方式。
在教学中,通过创设情境,让学生自主发现问题,获得能力发展和深层次的情感体验,在得到抽象化的数学知识之后,及时应用到新的现实问题中去,从而渗透数学归纳思想,达到方法的多样化,个性化。学生构建数学概念的过程不能简单“告知”,通过引导,让学生亲自操作和体验,在解决问题中初步感知公倍数、最小公倍数的特点,明晰求最小公倍数的基本。让学生通过具体的操作和交流活动,认识公倍数和最小公倍数。思路,在富有生命活力的再创造过程中,主动建立概念,完成数形结合思想的渗透。
(一)故事引入感知概念
出示关于阿凡提的故事,巴依老爷说:“从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。那么在这一个月里,阿凡提可以选哪些日子去呢?你会帮他们把这些日子找出来吗?”同桌讨论,学生合作在日历卡上找出巴依老爷和账房先生的共同休息日。
根据学生的汇报,教师完成板书:
巴依老爷的休息日4、8、12、16、20、24、28
账房先生的休息日6、12、18、24、30
他们共同休息日12、24
最早的休息日12
【设计意图】以故事的形式提出问题,让学生通过解决这个生动有趣的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验。学生在解决问题中初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。这样,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到数学源于生活又高于生活的特点。
(二)加深理解总结方法
1.公倍数和最小公倍数的概念教学
最早的休息日(4和6的最小公倍数)12
【设计意图】怎样能让学生深刻理解最小公倍数的意义,是本节课的一个重点。学生构建数学概念的过程,决不能是简单“告知”的过程,以概念为本的学习需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造过程中,主动建立概念。完成数形结合思想的渗透。
2.用集合圈表示倍数、公倍数、最小公倍数。首先让学生用数学上的集合圈的形式表示4的倍数和6的倍数。(课件出示集合圈)。然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,相交的这一部分表示什么呢?(课件出示集合圈的动态过程)
【设计意图】根据弗赖登塔尔“数学是一项人类活动”的观点,从学生熟悉的生活开始,从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。
(三)巩固运用
再求新法(本环节为两个数的最小公倍数的算理和方法引探是教学难点)
出示同学排队的题目:六(1)班同学在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。这些学生至少有几人?”问题出示后,给学生独立思考的时间,学生很快用列举法求出6和8的最小公倍数。然后我预设让学生寻找更简便的大数翻倍法,以及进一步探索用分解质因数的方法求最小公倍数,先把6和8分解质因数,观察质因数之间的关系,发现2是它们公有的质因数,而3和4是它们各自独有的质因数,从而突破难点。使学生理解用分解质因数求最小公倍数就是全部公有质因数和各自质因数的乘积。而短除法实际就是分解质因数的简便算法,并且引导学生发现,短除号左边的数就是它们的公有质因数,下面的数就是相对应数各自独有的质因数。在学生交流各自的方法后。我们可以把这些数在数轴上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重合的点是6和8的公倍数。(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)
【设计意图】用富有生活问题的情境,激发学习兴趣。探究学习是新一轮基础教育课程改革所倡导的学习方式。在教学中,创设一种情境,通过学生自主发现问题,获得能力发展和深层次的情感体验。渗透数学归纳思想,体现方法的多样化,个性化。
(四)解决问题深化理解
在列举法的基础上,发现特殊关系的两个数的最小公倍数的规律。由一道生活问题结束本课。(课件出示一道生活情境题)
【设计意图】数学教育的出发点和归宿都应当是学生熟悉的现实生活。学生得到抽象化的数学知识之后,应及时把它们应用到新的现实问题中去。
公倍数与最小公倍数
1、会利用列举法和短除法找出两个数的公倍数和最小公倍数。
3、在探索中发现,在发现中体验数学的自身规律的魅力,从而激发学生持久的学习兴趣。
教学重点。
教学难点。
理解两个数的公倍数和最小公倍数的意义,能正确地运用和列举法和短除法确定两个数的最小公倍数。
教学方法合作学习法、小组探究法、知识迁移法。
教学准备复习题。
教学过程:。
一、温故知新。
1、什么叫公因数?
2、什么叫最大公因数?
3、写出下列各组的最大公因数。
3和74和69和1812和30。
引出新课。
二、师生共研。
以4和6这组数为例,就在50以内数表中找一找。你发现了什么?
(1)4的倍数:4、8、12、13、20、24、28、32、36、40、44、48。
(2)6的倍数:6、12、18、24、30、36、42、48。
(3)两个都有的:12、24、36、48。
(1)让学生以小组的形式探讨,看看如何用短除法来求两个数的最小公倍数。再交流。
(2)反馈时围饶着以下几个方面交流:
短除式中除数是2的什么数?
为什么在得出商2和3时不再往下除?
(3)师生共同探究与交流。
让学生用自己喜欢的方式找一找,再用另一种验证。
重点反馈短除法。
3、探究特殊关系的两数怎样确定它们的最小公倍数。
先让学生独立完成。
思考后交流自己的发现。
三、全课总结。
1、这节课我们交的新朋友是什么?你现在对它知道多少?
(1)先定关系。
(2)确定用什么方法找。
3、有什么问题或发现?
四、布置作业:
2、3、4、5。
《找最小公倍数》教学设计
1.a和b都是自然数,如果a除以b商没有余数,那么a和b的最大公约数是,最小公倍数是()。
2.如果a和b是互质的自然数,那么a和b的最大公约数是(),最小公倍数是()。
3.三个质数的最小公倍数是42,这三个质数是()。
4.100以内能同时被3和7整除的最大奇数是(),最大偶数是()。
5.一个数的最大约数是a,它的最小倍数是()。
6.所有偶数的最大公约数是(),所有奇数的最大公约数是()。
二、判断。
1.几个数的公倍数是无限的,最小的只有一个。()。
2.两个不同的自然数的最大公约数一定比最小公倍数小。()。
3.如果三个自然数两两互质,它们的最大公约数是1,最小公倍数就是三个数的乘积。()。
4.如果一个质数与一个合数不是互质数,那么这个合数是这两个数的最小公倍数。()。
5.一个数的约数必定小于它的倍数。()。
三、选择题。
1.96是16和12的()。
2.几个质数的连乘积是()。
3.甲是乙的15倍,甲和乙的最小公倍数是()。
a、15b、甲c、乙d、甲×乙。
4.12是24和36的'()。
a、约数b、质因数c、最大公约数。
5.一个数的最大约数()它的最小倍数。
a、b、
6.a=2×2×5,b=2×3×5那么的最小公倍数是()。
a、600b、300c、60d、10。
以上就是北师大版数学五年级:《找最小公倍数》练习题全文,希望能给大家带来帮助!
小学频道五年级数学试题。
小学数学最小公倍数教学设计
一、教材分析:
我说课的内容是:人教版五年级下册第88~90页的《最小公倍数》一课,最小公倍数是在学生掌握了倍数、因数和公因数概念的基础上进行教学的,主要是为了以后学习通分做准备。在生活实际中也存在它自身的的意义和作用,这节课是一节以概念为本的教学。教材的编写意图是使抽象的数学知识与生活实际相联系,建立概念;用自己想到的方法尝试求两个数的最小公倍数,体现算法的多样化。
二、学情分析:
在不同的学校、班级进行前测,直接让不同认知水平的学生,用模拟的小长方形墙砖铺成正方形。在动手操作中,由于受密铺的影响,横拼竖摆,不但耗时过长,而且很难有效的构建公倍数内在的结构关系。因此在设计操作环节时,我搭建“脚手架”。通过构建公倍数内在的结构关系和构建公倍数体系两个环节进行有效教学。成功搭建起教学内容与学生求知心理之间的桥梁。
三、教学目标:
(1)建立公倍数与最小公倍数的概念,会用集合图表示。掌握求100以内两个数最小公倍数的方法。
(2)通过动手操作、独立思考、合作探究、合作交流等方式,建立公倍数和最小公倍数的概念,培养发现问题、解决问题的能力。
(3)学会用数学的眼光观察生活、思考问题。积极参与到对数学问题的探究活动中。真真切切地体验到学习数学的快乐和价值。
四、教学准备:
游戏卡片一套,模拟墙壁的平面图、模拟长方形墙砖多套,作业纸多张和多媒体课件一套。
五、教法和学法:
加点理念课堂上我采用尝试教学法和启发教学法。
学生通过动手操作、独立思考、合作探究、合作交流等方法进行学习。
六、教学过程:
这节课我按照下面五个环节进行教学:初步感知,建立表象;动手操作,建立概念;自主探究,归纳方法;实际应用,回归生活;全课总结,延伸课外。
(一)、初步感知,建立表象。
首先我从游戏中引入,我把枯燥的倍数复习设计成“抢倍数的.游戏”。让学生初步感悟公倍数。(预设5-6分钟)。
具体操作:
首先我手里拿着数字卡片,给学生说,今天老师给大家带来一个风靡我们全班的游戏—抢倍数游戏。面对全体同学讲一下规则:找两个同学上来,一个负责抢3的倍数,一个负责抢2的倍数。老师把卡片放到黑板上,过了抢的时间老师会把卡片收起来。最后抢的多的同学获胜。
然后把全班分成两大组,要求每组快速派一名代表上来,
当两名学生上台进行游戏,其他学生做裁判共同参与。
接下来游戏,当第7张卡片出来的时候,两个同学会同时抢6这个数字。如果没有出现抢的局面。我会再出示12这个数字。学生很容易发现并说出:数字6是决定游戏胜负的关键,因为6既是2的倍数,又是3的倍数。
紧跟着追问:“为什么都来抢6这张卡片”。先让这两个代表说说,再让其他同学说说。
然后揭示出公倍数的概念。6既是2的倍数,又是3的倍数,也就是说6是3和2公有的倍数,我们把6叫做3和2的公倍数.(板书公倍数及概念。)。
引导学生想想:那你还知道哪个数是3和2的公倍数?
学生答出12、18、24等数,并用这些数完整的表述出公倍数的概念。
及时表扬说的对,说的完整的同学。多让几个同学说说,并让同桌说说,强化公倍数的概念。
(二)、动手操作,建立概念。
这一大环节是深刻理解公倍数,建立最小公倍数的重点内容,为此我分两个层次进行教学。
(1)固定的正方形边长,选择长方形墙砖。(预设6-7分)。
首先在前面通过游戏感悟公倍数的基础上,过渡到生活中。让学生体验公倍数能在生活中帮我们做什么。
(出示生活情境,课件显示。)。
当学生明白题意后,要求学生利用模拟的长方形墙砖和墙壁正方形平面图,
分小组活动进行动手操作。学生通过摆一摆,画一画,得到不同的方案。
在汇报方案时,学生都会选择长3分米,宽2分米的墙砖。让学生说说自己的想法。适时进行追问:“正方形墙面墙壁的边长所用墙砖的长和宽有什么关系?”
让学生自主发现:按照要求进行,所铺成的正方形边长必须是小长方形长和宽的公倍数这一结论。
这个时候多让几个学生说说这一结论。
其次我再追问:“大家为什么都不选择长5分米,宽3分米的墙砖?”
学生很容易答出,因为12不是5和3的公倍数。
最后我作课堂小结:“看来所铺正方形墙壁的边长必须是长方形墙砖长3分米,宽2分米的公倍数。”
(2)用固定的长方形墙砖,铺多个的正方形。(预设6-7分)。
从上个环节直接过渡到问题中。“同学们,真了不起,通过动手操作,获得很有价值的发现。(课件出示情境)用这种长3分米宽2分米的长方形墙砖,整块整块的铺,还可以铺成边长是多少分米的正方形?”
人教版最小公倍数的应用教学设计
1、在原有知识结构的基础上,通过自主建构,形成新的知识结构,掌握最小公倍数的意义及求法。
2、培养学生的迁移、判断、推理、分析能力。学会反思,学会合作。
3、培养学生的积极学习情感,学会欣赏他人。
教学过程。
一、再现原有知识结构。
1、用短除法求30与45的最大公约数。
独立完成,一人板演,集体订正。
师提问:怎样用短除法求两个数的最大公约数?
(评析:根据教材的内容与学生的实际需要设计课堂引入环节,实实在在,利于学生再现原有知识结构,为构建新的知识结构做好了知识准备与心理准备。)。
二、构建新的知识结构。
1、揭示课题。
2、明确意义。
师:你认为什么是最小公倍数?
生1:两个数公有的最小的倍数。
师:说的很好,你很会扩写。(生笑)。
生2:两个数公有的倍数叫做它们的公倍数,其中最小的.一个是它们的最小公倍数。
生3:公倍数可以是两个数公有的倍数,也可以是三个或四个数公有的倍数。我认为应改成几个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。师:太好了,谁能再说一遍。
生说完师出示,齐读。
(评析:有了最大公约数的认知基础,学生很容易通过迁移实现对最小公倍数这一概念的自主建构。因此教师直接揭示课题,让学生根据自己的理解,互相补充完善最小公倍数的概念,取得了很好的效果。)。
3、探讨求法。
师:你认为可以怎样求两个数的最小公倍数?
生1:用短除法。(师板书:短除法)。
师:oh,你会吗?(生摇头。受求最大公约数的方法的影响,直觉让他有。
《找最小公倍数》教学设计
教学目标:
1.结合具体情境,体会公倍数和最小公倍数的应用,并会利用例举法等方法找出两个数的公倍数和最小公倍数。
2.培养学生分析归纳能力以及主动探究的精神。
教学重点:理解两个数的公倍数和最小公倍数的意义。
教学难点:探究赵公倍数和最小公倍数的方法。
教具:多媒体课件。
教学过程:
一.创设情境、引入新课。
1.课件展示蜜蜂采蜜。
师:同学们看看这是什么?
生:蜜蜂。
师:蜜蜂在干嘛呀?
生:在采蜜。
(生自由发表意见,各抒己见)。
2.师:现在呢,有只小蜜蜂呢提出了这么一计策,把这些蜜蜂分成两个组,一组四分钟回来一次,一组六分钟回来一次,你们觉得这个问题完全解决了吗?同学们想一想。
(片刻之后)师:同学们把书翻到第六十页,在这个表中把4的倍数用标出来,用把6的倍数标出来。
两分钟之后展示一位同学所标出来的。
3.师:那4的倍数有哪些?
生:4、8、12、16、20、24、28、32、36、40、44、48。
师:那6的倍数又有哪些呢?
生:6、12、18、24、30、36、42、48。
又标了的有哪些?
生:12、24、36、48。
师:12、24、36、48既是4的倍数又是6的倍数,它们就叫做4和6的公倍数。
师:那么我们的两组蜜蜂在这些时候又会碰上一起回家。那它们最快是在什么时候相遇呢?
生:12分钟。
生:有,有无数个。
师:你能找出最大的一个吗?
生:不能。
师:4和6没有最大的公倍数,但有最小的公倍数,它就是我们这节课要学习的内容——最小公倍数。
二.巩固练习。
1.师:现在如果把蜜蜂分成两组,一组6分钟回来一次,一组9分钟。
回来一次,你知道它们最快什么时候相遇吗?(完成书上60页的试一试)。
师:50以内6的倍数有哪些?
生:6、12、18、24、30、36、42、48。
师:50以内9的倍数又有哪些?
生:9、18、27、36、45。
师:50以内6和9的公倍数有哪些?
生:18和36。
生:18。
师:我们的两组蜜蜂最快在18分钟的时候相遇了。
生:列举法。
21824。
912。
34。
18和24的最大公因数就是:2×3=6.
18和24的最小公倍数就是:2×3×3×4=72。
3和610和89和4。
4.联系实际,解决问题。
师:看看,这是什么?
生:跑道。
师:同学们平时爱跑步吗?,在学校的跑道上跑一圈大概需要多长时间?现在看看他们三个人的。
(1)我跑一圈用6分钟。
(2)我跑一圈用4分钟。
(3)我跑一圈用8分钟。
师:你能提出问题吗?
生1:他们同时出发男孩和女孩最快什么时候相遇?
生2:他们同时出发男孩和老师最快什么时候相遇?
生3:他们同时出发老师和女孩最快什么时候相遇?
(独立完成)。
三.本堂小结。
师:通过这节课的学习你有什么收获?
生先谈收获师再总结。
1.同学们都很好的掌握了用列举法找两个数的公倍数和最小公倍数的方法。
2.学会了用短除法求两个数的最小公倍数。
《找最小公倍数》教学设计
1.让学生通过动手操作理解公倍数和最小公倍数的意义,在表示倍数和公倍数时进一步体会集合思想。
3.在具体的情境当中体验最小公倍数的实际应用,感受数学的价值。
理解公倍数和最小公倍数的意义,掌握求两个数的最小公倍数的方法。
会用求两个数的最小公倍数的方法解决实际问题。
一、游戏引入。
师:咱们先来玩个拼图游戏,每张桌面都摆着两个正方形,大正方形边长为8厘米,小正方形边长为6厘米。桌面还放着一叠长3厘米,宽2厘米的小长方形。请你选择一个正方形,将小长方形铺在它的上面,要正好铺满,没有空隙。同桌合作完成就举手示意,开始。
学生操作,教师巡视。
师:你们选哪个正方形?说说你的理由。
生:我们选的是小正方形,因为6既是2的倍数,也是3的倍数,这样才能刚好铺完。
生:大正方形的边长是8厘米,8是2的倍数,但不是3的倍数,所以大正方形不合适。
师:也就是说得考虑正方形的边长与小长方形长,宽的关系咯?
生:正方形的边长必须是小长方形长与宽的公倍数。
师:刚才他提到了一个新词叫什么?
生齐答:公倍数。
师:你懂它的意思吗?
生:几个数共有的倍数。
师:那用长3厘米,宽2厘米的长方形纸片还能刚好铺满边长是多少厘米的正方形?
生:12厘米,18厘米,24厘米。
教学意图:选择长方形纸片铺正方形的活动教学公倍数,让学生通过操作领会公倍数的含义。通过学生动手操作,加深对概念的理解,体会公倍数的意义。使学生在有效地操作中发现和感悟。
二、教学例题。
出示例题:找出6和8的公倍数。
1.尝试解题。
师:可以用什么方法找?
生:列举法,筛选法。
师:这些方法在之前学习什么的时候也用过?
生:找公因数的时候用过。
师:太棒了,能学以致用。
师:下面就用你喜欢的方法找出这两个数的最小公倍数。
学生独立完成。
学生汇报并板书。
师:谁能用韦恩图把这些信息呈现出来。
学生板演。
师:在填写韦恩图的时候要注意什么?
生:不能把公倍数写重复了。
生:我有个好办法,先把公倍数填好,再填它们独有的倍数,这样就不会出现重写的错误。
师:这个做法很好。
2.观察探究。
师:从6和8的公倍数中,你发现什么?
生:公倍数中最小的那一个。
师:还能发现什么?
教学意图:让学生通过观察思考,自己发现规律,通过交流互动总结规律,最后老师加以归纳概括,加深对规律的认识,苏霍姆林斯基曾说过:人的内心里有一种根深蒂固的需要――总感到自己是发现、研究、探寻者。作为教师要给学生留出思考的时间和空间,培养他们独立思考和发现问题的能力。
师:刚才我们提的最小公倍数,请你找出下列每组数的最小公倍数。
课件出示练习。
12和365和253和118和9。
学生独立完成并汇报。
师:分小组讨论,你发现了什么规律?
教学意图:在课堂上,要给学生交流讨论的空间,(下转第43页)(上接第39页)合理有效地组织学生进行合作学习,有助于每个学生在小组里充分发表自己的观点和见解,有助于学生通过认真倾听别人的想法来弥补自己的不足,有助于培养学生的团队意识和合作精神。
生汇报归纳:当两个数有倍数关系时,较大数就是它们的最小公倍数;当两个数是互质数时,它们的乘积就是它们的最小公倍数。
师:你们是善于观察和思考的孩子,是的,当要求两个数的最小公倍数时,先判断它们是否有倍数关系或者是否是互质数,如果不是这两种特殊关系的话,再采用列举法和筛选法找它们的最小公倍数。
师:大家应该还记得,之前找两个数的最大公因数时,用到的短除法和分解质因数的方法,不知这两种方法可否用到找最小公倍数中呢?试一试。
教学意图:把短除法和分解质因数的方法在这里教学,关键是让学生体会找最小公倍数的方法还有许多,让这个环节更突出,而不与之前公倍数的教学环节混淆,使学生在头脑中有个清晰的认识。
生板书。
师:看来是可以的,这几种方法比较,你喜欢哪一种?为什么?
生1:我喜欢列举法,容易懂。
生2:我喜欢短除法,简单快捷。
教学意图:解决问题的方法是多种多样的,这里不限制学生的思维,让学生自己选择适合自己的方法来解决问题,使学生的个性得到尊重和发展。
三、练习巩固。
(2)完成课本91页练习十七的第三小题。
学生独立完成,集体订正。
四、拓展应用。
学生独立做题,集体交流。
小学数学最小公倍数教学设计
本节课基本能实现预期的教学目标,让学生准确的理解“公倍数”与“最小公倍数”的概念和意义,也能够在学习方法上进行恰当的指导。在钻研教材、把握目标的基础上,充分利用材料组织教学,让学生深入浅出的进行学习课本的知识,教学过程也充分注意到了让学生独立思考、动手操作、自主探究知识,体现了“以生为主”的教学理念。
从作业的情况来看,学生对于用集合圈表示的方法学生错误很多,书写的要求要更规范一些。
二
本节课我发现对特殊方法求几个数的最小公倍数,倍数关系的学生掌握得快,但用乘积找最小公倍数的规律(特点),给学生思考交流的时间有些少,学生找到的`特点有局限性,老师也没有及时给予提示。比如:当是奇数和偶数时,最小公倍数不一定就是这两数的乘积。如6和9的最小公倍数是18而不是54。这一特点是偶然现象不是普遍规律。可引导学生对四组数字再比较,引导发现他们因数的特征(公因数只有1)使学生形成准确的认识。造成这一失误的原因一方面是由于时间的紧,另一方面担心复习公因数会影响新知识的学习。其三是对教材的钻研不够,自己对这一部分知识把握也不准。其次,由于在时间的控制上不恰当,后面部分任务还没有完成。