导读:《高数 高数学习心得【优秀6篇】》是潇洒范文网小编专门为您精选的一篇心得体会类型文章,助力您的范文写作,希望有所帮助。
高等数学在考研数学中占有举足轻重的地位,数一、数三有82分,数二有116分,需要用心复习。一些学生反映,教材看了好几遍,习题做了好几本,做题依然无从下手。类似情况的原因是重点把握不到位,做题的方法和技巧掌握不牢固。问渠那得清如许,为有源头活水来,以下是编辑给大家整理的6篇高数学习心得,希望能够帮助到大家。
高数学习心得 篇一
回顾大一的高数学习历程,感慨颇多。高数在整个大学的学习课程中占据这着非常重要的地位。其一,高数的学分是所有科目中最高的。第一学期5学分,第二学期6学分。其二,高数在考研数学中将近80%的比例。而考研数学的成绩会很大程度上决定考研的最终成绩。其三,高数是学习其他的课程的基础。比如我们大二上学期学的大学物理,还有其他学院的线性代数等等。对于大一同学来说,高数就是一道必须迈过坎。作为一个过来人,今天我就说说关于高数的点滴想法。谨以此与大家分享。
学习任何东西都需要工具,学习数学更是要多种工具并进。首先,你要有足够的课外参考书来供自己参考。没有参考书,只有课本是根本不行的。你可以去学校的图书馆借阅相应的书籍。网络是所谓的公开式大学,有电脑的同学可以从网上查阅相关的资料,不会就找“度娘”。既可以提高自己搜索信息的能力,又节省了时间。
概念定理永远是数学的灵魂。我在学习高数过程中非常重视概念的理解,定理的推导,知识点间的联系。例如:极限的概念及其证明,导数与极限的关系,连续与可微的`关系函数 极限 连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、无穷级数、常微分方程。很多同学会说“我也知道概念很重要,可我就是理解不了啊!”类似这种情况的同学不在少数。我给的建议是:逐字逐句阅读。不会不懂就要借助以上所说的工具来学习。概念理解了,很多东西就迎刃而解了。 当时我对概念理解很是郁闷,没得办法,只能一字一句的解析,一点一点的抠。慢工出细活嘛,时间长了就理解了。相信:功到自然成。
练习,练习再练习;总结,总结,再总结。坚持,坚持再坚持。第一次做后面习题会错很多,可能一晚上就做那么两道题。请你不要气馁,谁都是这么走过来的。错了的题要总结。过几天翻过来再做,再总结。反反复复,你做题的速度会越来越快,总结的东西会越来越精炼。可能你会用整整的一天去练习高数,在这个练习
过程中会很痛苦,但是你一定要坚持下来。正所谓:宝剑锋从磨砺出,梅花香自苦寒来。
以上两点就是我学习数学的精华所在。但是这够了吗?这远远不够!按照这样的做法,你上课会听得懂,作业也慢慢会做了。但是你能在众多高手中脱颖而出吗?你需要做的还有很多。
下面是的我的一些建议:
首先是预习。你的进度要比老师的进度至少快一节,这样你才会更好的掌握课堂知识和更好地学习总结。有能力,有时间,你就再往后预习。积累问题,带到课堂去问老师。这也是让老师认识你,让同学认识你的最好机会。
其次是练习,总结。上面提到过,数学能力是慢慢通过大量的做题和实践中培养出来的,我们要不耐其烦的做题来提高数学素养。 再者就是课后拓展,有能力的同学课后可以做一些题来扩展自己的思维。借助网络,借助参考书等等。
最后我再说说考试的内容吧。期中考试和期末考试很多题都是课本上的,也有很多是上一学期考试的原题。所以针对性的进行复习会起到意想不到的效果。熟练解决课后的习题,考个好成绩不成问题。
学习数学虽说枯燥,但期间也充满着很多的乐趣。做出一道题,总结出一类型题都会让你高兴地蹦地三尺,这是其他科目带不来的。希望我的这些建议对大家学习高等数学有所帮助,你的进步就是我的欣慰!
高等数学重要知识点总结 篇二
1、函数、极限与连续
重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2、一元函数微分学
重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
3、一元函数积分学
重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
4、向量代数与空间解析几何(数一)
主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5、多元函数微分学
重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6、多元函数积分学
重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7、无穷级数(数一、数三)
重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8、常微分方程及差分方程
重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。数一还要求会伯努利方程、欧拉公式等。
高等数学重要知识点总结 篇三
1、起步阶段(到20xx年11月)
了解数学考研内容、考试形式和试卷结构,对自我进行评测并对测评结果认真分析,找出弱点与不足,制定科学合理的个性化学习计划,准备资料进入复习状态。
2、基础阶段(201xx年12月——20xx年6月)
学习目标:全面整理考研数学的知识点,掌握基本概念、定理、公式并能进行基本应用,经典教材基础知识掌握熟练,课后习题能够独立解决,基础试题测试正确率达到90%以上。
学习形式:参加基础班视频教学学习和教师辅导答疑相结合。其中视频教学80课时,答疑辅导及知识补充约80课时。
学习时间:从20xx年12月——6月,约6——7个月时间,每天3~4小时。基础较差或要考高分(125分以上)的学员时间最好提前开始复习。
学习方法:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的基本概念、基本理论、基本方法要系统理解和掌握,完成数学考研备战的基础准备。大家在基础阶段花大力气把基础夯实是很值得的,并且近几年的数学考研试题越来越偏基础。在这个阶段,建议大家分为两步来复习:
第一步,教材精学:集中精力把教材好好地梳理,按照大纲要求结合教材相应章节全面复习,按章节顺序独立完成教材的练习题,通过练习知识点进行巩固。不懂一定要随时提问。建议每天学习新内容前复习前面学过的内� 这个阶段约需要4~5个月的时间。
第二步,基础知识巩固和提高:通过考研基础试题的练习和测试,对考研的知识点进行巩固和加深理解,并能进行基本应用。建议大家使用与教材配套的复习指导书或习题集,通过做题巩固知识。在练习过程中遇上不懂或似懂非懂的题目要认真思考,不要直接看参考答案,应当先温习教材相关章节再尝试解题。按要求完成练习测试后,要留一些时间对教材的内容进行梳理,对重点、难点做好笔记,以便于后面复习把它消化掉。这个阶段约需要2个月的时间。
此阶段可以结合同学们自己的实际学习情况,比如有些同学某部分内容不熟悉或没学过,可以到理学院咨询相关教师,去随堂听课。
3、强化阶段
学习目标:按照20xx年考研最新大纲要求,进一步巩固和强化考研数学的'重点、热点和难点,从知识结构上进行系统训练,能够按照考试要求解题,能够独立完成一定难度的试题,要求测试成绩正确率达到80%以上。
学习形式:暑期强化班视频教学和教师辅导答疑相结合。其中视频100课时,答疑辅导约60课时。学习时间:从7月~9月,约3个月时间,每天4小时。
学习方法:通过对考研数学辅导材料(考研复习全书)的研读和试题精解,在巩固第一阶段学习成果的基
础上系统掌握知识脉络,提高解题的速度和正确率。本阶段是考研复习的关键,大体可以分两轮学习:第一轮:7月到8月,按照20xx年考研最新大纲要求全面掌握考试内容。参加强化班学习,根据老师课堂讲解和讲义学习,熟悉考研数学的重点题型,将知识点系统化和脉络化。在学习过程中对重点、难点做好记号,适当的做些笔记,便于下一轮复习。
第二轮:9月到10月,通过考研辅导资料与专项习题的试题训练,对考试重点题型和自己薄弱的内容进行强化和提高,并能举一反三,提高解题的速度和正确率。
4、提高阶段
学习目标:通过真题训练提高知识综合运用的能力,把握考试难度、解题技巧及命题趋势,筛理出自己的薄弱环节并进行专项突破,测试成绩正确率要求达到80%以上。
学习形式:冲刺串讲班视频教学20课时和真题模拟演练,每星期考一张往年真题,辅导老师收上来,批改后进行讲解,辅导讲解约30课时。
学习时间:从11月~12月,约2两个月,每天3小时。
学习方法:
第一步,通过对近几年的真题全景测试把握考试难度,通过真题剖析洞悉解题技巧及,通过失分题筛理出自己的薄弱环节。
第二步,专项强化弥补自己的薄弱知识点。
第三步,真题全景训练和深度剖析:用一个月的时间把近十年真题搞熟搞透。
第四步,通过真题和模拟题试卷进行高强度解题训练,全面提高解题的速度和正确率,高度重视做错的题目。
5、冲刺阶段
学习目标:对所学知识系统总结,把握考试热点重点,调整好状态。
学习形式:参加视频模考班和模拟试卷考核,辅导教师讲解和答疑。
学习时间:从12月中旬到考前,约一个月。
学习方法:这一阶段的目标是保住自己在前几个阶段的成果,我们要做到:
1、通过对以往学习笔记和所做试题的复习查漏补缺;
2、对教材和笔记中的基本概念、基本公式、基本定理加强记忆,尤其是平时不常用的、记忆模糊的公式,经常出错的要重点记忆;
3、进行适量冲刺题训练,保持做题感觉并调整考试状态,轻松应考。
高数学习心得 篇四
20xx年7月22日至7月24日,作为高等数学课程主讲教师,受我校教务处委派,我和本校赵老师参加了教育部全国高校教师网络培训中心在河北师大举办的高等数学课程培训。此次培训的主要内容是高等数学国家精品课程建设,由国家级名师北京航空航天大学的李尚志教授主讲。
李教授以让微积分变得简单易懂开始讲解,讲课始终充满了激情,语言生动、风趣。通俗的解释与数学的严谨相映生辉、相得益彰。精辟的语句,言简意赅,一箭中的,耐人寻味。空间为体,矩阵为用。代数几何熔一炉。代数是具体运算,几何是抽象理解。代数是体力劳动,几何是脑力劳动。把复杂的问题简单化,决不能把简单的问题复杂化!只有喜欢,才能做好。檐走壁之电影实现——微积分基本定理。令人反复体会,绵远悠长,意味无穷。可见其语言功底的`深厚,值得我们每一位数学同仁,去学习、效仿。我认为一个优秀的大学教师,除了必须具有坚实的数学功底与数学素质外,还必须具有令莘莘学子们所折服的语言表达能力。只有这样,你所讲的课才能为学生们所喜欢,才有可能成为所谓的精品课。
李教授的讲解体现了他渊博的知识,科学严谨的思维,丰富多样的教学法运用。零散乏味的基本知识运用科学思维来讲解,再运用多样的讲解方法,极易引起学生探究的心理,引起学习的积极性。李教授对高等数学教材的进行全面解析,结合本课程抽象复杂的特点,强调兴趣教学环节的设计,引发我们对未来课程建设和教学资源建设的思考。通过这次培训,使我更深入地理解该门精品课程的建设理念、建设思路、方法与经验,对讲授该课程的指导思想和理念有了新的体会。总之,他能把看似深奥的数学问题用通俗的语言表述得十分清楚,使没有数学知识的人也能明白。同时,在他脑海里,任何事物都可以找到数学答案,数学因此精彩而美丽。
李教授强调多媒体教学,一要发挥其优势,二要不为多媒体而多媒体。李教授的精品课程将教材、课件、实验、网络课、辅导材料等全方位、立体地呈现在我们面前,做得非常好,可以看出他们对教学工作投入的热情和精力。多媒体教学方法的应用大大提高了授课效率,扩大每一次课的教学内容的信息量,弥补了当前课时不足的缺陷。
李教授对该课程的教学难点、教学重点的剖析及经典案例分析,将自己多年来获得的宝贵的教学经验毫无保留地传授给我们,使我们受益匪浅。对我加深对本课程的理解和把握以及具体应当如何展开课堂和课外教学帮助都很大,不论是在高等数学精品课程建设、课堂教学设计与教学法、课程设计训练与实践教学设计、课程教学改革与教学资源建设规划等方面都有很多收获。
高数学习心得 篇五
经过半年的高等数学的学习,对于高等数学有些心得与体会。
首先高等数学是我第一次接触,明显感觉到它与初中及高中时候学习的初等数学有很大的不同。对于初等数学,我们是为了中考以及高考才努力学习,学习初等数学,只需要做大量的习题,熟练解题的步骤,就可以在考试中获得十分可观的分数。但是对于高等数学,我们以前学习初等数学的方法以及认识已经不再适用于高等数学的学习。
学习高等数学是为了诸多研究性专业与学科打好基础,它是研究科学问题的最重要的工具,毫不夸张的说高等数学就是一门研究性的学科,学习高等数学我们要抱着科学严谨的态度。对于高等数学我们要多思考,多理解,从根本上去探索它的定义,它的意义。学习初等数学的题海战术已不再适用于高等数学。如果对于高等数学的某个定义你不理解,做再多的题也很难去寻找这个定义的根本,就算你通过做大量的题熟悉某一类题目的解题方法,但将题目类型稍微改变一下,估计你就无计可施了。所以,我们要从根本上理解它的定义,因为不管题目如何变换,它始终不会离开定义。所以理解定义是学习高等数学的关键,是高等数学的基础。
兴趣也是学习高等数学的关键。学习高等数学必须要有兴趣,很多人说高等数学很难很枯燥,就是因为没有产生兴趣,兴趣是学习最好的导师,只要你有兴趣,那么你自然会努力学习这门课程,就不会感觉到乏味与困难。兴趣是你学习高等数学的动力,有了兴趣你就会勇于在高等数学的海洋中探索。
在这半年的学习中,我们学习了高等数学中的函数、极限、导数、微积分等概念。首先在函数的学习中,我们主要学习了一些关于函数的基本概念以及函数性质。其次,我们学习了极限,在极限的学习过程中,我们学习了两个重要极限以及介值定理。在求极限的过程中我们学习等价替换等方法求极限,为我们解决了求极限问题的障碍。在学习极限之后,我们学习了导数。明白了引出导数的原因,以及导数存在的意义。在导数的学习中,我们学习了隐函数的导数;导数的定义;洛必达法则求极限的方法;求曲线的切线方程;函数的一些利用导数求出的一些性质,例如单调性,凹凸性;微分在近似计算中的应用;麦克劳林公式,中值定理证明以及导数的应用等方面的知识。导数是高等数学非常重要的组成部分,在高等数学中与许多概念都有关联。紧接着导数我们学习的是积分,积分是高等数学重要的组成部分之一,积分是由平面图形的面积提出的,它在物理学中也有极多的应用。在积分的学习中,我们学习许多关于定积分与不定积分概念与计算方法以及(不)定积分中的性质,并且在定积分中有诸多例如奇偶性,周期性等重要性质,这是我们学习的'重要部分。在积分中还有一些性质需要我们注意,比如反常积分,变上限积分函数,还有利用积分求极限,还有一点非常重要的应用需要我们注意,利用积分求面积求体积。在这学期最后我们学习了我感觉是本学期最难一部分,微分方程。在课堂听课的过程中我发现了许多同学对这方面的学习与理解有困难,我也感觉到这章的学习比前几章要吃力的多。微分方程这章的定义比较深奥,这是导致许多同学无法理解的重要原因。其次这章的学习过程中,题目的类型过多,以及书本上讲的过于狭隘,我们在计算过程中十分容易碰壁。对于许多题目无从下手。
经过这半年的学习我对数学有了更深刻的认识,数学是最严谨的语言,它只有错与对,永远不会出现模棱两可的概念。数学也是我最喜欢的学科,因为数学题目会给我惊喜,没当解出一题,自豪与满足感便会充满全身。这般的学习也让我对数学的学习有了更详细的计划,让我对数学的学习有了更浓厚的兴趣。
高数学习心得 篇六
在大专阶段学习高等数学是一个必修课程,我最初对于高等数学的学习并无太多的兴趣,觉得这门课程枯燥且难以理解。然而,我也明白数学是现代科学的基础,掌握高等数学可以提高我的逻辑思维和解决问题的能力,因此我决定认真学习这门课程。我的目标是通过学习高等数学,提高我的数学水平以及其他与数学相关的科目的学习成绩。
在学习高等数学的过程中,我遇到了很多困难和挑战。首先,高等数学的概念和公式繁多,记忆起来非常困难。其次,高等数学中的推理和证明需要较强的逻辑思维能力,而这正是我在初中和高中时期比较欠缺的。同时,高等数学的题目多样化,需要不同的解题方法和技巧,这也使得我在解题过程中感到有些迷茫。
为了克服学习高等数学中的困难,我采取了一些方法和策略。首先,我建立了坚实的数学基础,通过复习初等数学的知识,巩固自己的数学基础知识。然后,我努力培养自己的逻辑思维能力,通过做逻辑推理题和数学证明题来提高自己的逻辑思维能力。此外,我还积极寻找各种学习资料,包括参考书、习题集和教学视频等,以拓宽自己的学习资源,从不同的角度理解和掌握高等数学的知识。
通过学习高等数学,我逐渐克服了困难,提高了自己的数学水平。我发现,高等数学中的概念和公式并不是孤立的知识点,它们都与实际问题密切相关,学习数学可以帮助我更好地理解和解决实际问题。同时,我通过解题的过程培养了自己的逻辑思维和解决问题的能力,这些能力将对我未来的学习和工作带来很大的`帮助。
学习高等数学的过程虽然充满了挑战,但我从中体会到了数学的美妙和乐趣,也收获了很多。我想将来继续深入学习数学,尝试更多的数学领域,提升自己的数学能力和理论水平。对于正在学习高等数学的同学们,我建议你们要保持积极的学习态度,克服困难和挑战,相信自己一定能够掌握好这门课程。此外,多与同学进行讨论和交流,相互鼓励和帮助,可以加深对知识的理解和巩固。最后,勤动手,多做习题和练习,通过实践来巩固和应用所学的知识,这样才能真正掌握好高等数学。